• Users Online: 134
  • Print this page
  • Email this page
Export selected to
Reference Manager
Medlars Format
RefWorks Format
BibTex Format
  Access statistics : Table of Contents
   2022| March-April  | Volume 65 | Issue 2  
    Online since April 28, 2022

  Archives   Previous Issue   Next Issue   Most popular articles   Most cited articles
Hide all abstracts  Show selected abstracts  Export selected to
  Viewed PDF Cited
Adenosine mono-phosphate-activated protein kinase-mammalian target of rapamycin signaling participates in the protective effect of chronic intermittent hypobaric hypoxia on vascular endothelium of metabolic syndrome rats
Fang Cui, Min Shi, Hao-Fei Hu, Yan-Ming Tian, Chen-Ming Zhou, Hai-Chao Mi, Shuo Gu, Zan Guo, Xiang-Jian Zhang, Yi Zhang
March-April 2022, 65(2):53-63
DOI:10.4103/cjp.cjp_84_21  PMID:35488670
Our previous study demonstrated that chronic intermittent hypobaric hypoxia (CIHH) protects vascular endothelium function through ameliorating autophagy in mesenteric arteries of metabolic syndrome (MS) rats. This study aimed to investigate the role of adenosine mono-phosphate-activated protein kinase-mammalian target of rapamycin (AMPK-mTOR) signaling in CIHH effect. Six-week-old male Sprague-Dawley rats were divided into control (CON), MS model, CIHH treatment (CIHH), and MS + CIHH groups. Serum pro-inflammatory cytokines were measured. The endothelium dependent relaxation (EDR), endothelial ultrastructure and autophagosomes were observed in mesenteric arteries. The expression of phosphor (p)-AMPKα, p-mTOR, autophagy-related and endoplasmic reticulum stress-related proteins, p-endothelial nitric oxide synthase, and cathepsin D were assayed. In MS rats, pro-inflammatory cytokines were increased, EDR was attenuated, and endothelial integrity was impaired. In addition, the expression level of p-AMPKα and cathepsin D was down-regulated, but the level of p-mTOR was up-regulated. While in MS + CIHH rats, all aforementioned abnormalities were ameliorated, and the beneficial effect of CIHH was cancelled by AMPKα inhibitor. In conclusion, AMPK-mTOR signaling pathway participates in the protection of CIHH on vascular endothelium of MS rats.
  1,238 155 -
Functional and structural assessment of the possible protective effect of platelet-rich plasma against ischemia/reperfusion-induced ovarian injury in adult rats
Eman Ahmed Allam, Rehab Ahmed Abdel Moniem, Gehan Yassin Soliman
March-April 2022, 65(2):64-71
DOI:10.4103/cjp.cjp_3_22  PMID:35488671
This study aimed to evaluate the possible protective effect of platelet-rich plasma (PRP) on ischemia reperfusion (I/R)-induced ovarian injury in a rat model. Forty adult female albino rats were randomly assigned to four groups: control, ischemia, I/R, and I/R + intraperitoneal PRP. Induction of ischemia was done by bilateral ovarian torsion for 3 h, while reperfusion was done by subsequent detorsion for another 3 h. PRP was injected 30 min before detorsion. Histological assessment and measurement of ovarian anti-Mullerian hormone (AMH) were done to assess the degree of tissue damage and the remaining ovarian reserve. Ovarian malondialdehyde (MDA) and total antioxidant capacity (TAC) levels were measured to evaluate the oxidant-antioxidant balance. Tumor necrosis factor-α (TNF-α) was measured to assess degree of inflammation. Immunohistochemical assessment of ovarian vascular endothelial growth factor-A (VEGF-A) was also done. PRP treated I/R group revealed a significant decrease in MDA (P = 0.007), TNF-α (P = 0.001), and a significant increase in TAC (P = 0.001) and VEGF-A (P = 0.003) in comparison to the untreated I/R group. Furthermore, limited vascular congestion and inflammatory infiltration were observed after PRP treatment. However, no significant difference was detected in AMH after PRP treatment. Our results denoted that PRP may help in preservation of ovarian function and structure during surgical conservative detorsion of the torsioned ovary. These protective effects could be attributed to its ability to reduce oxidative stress, inflammation and also to its high content of growth factors especially VEGF.
  904 139 -
Raspberry ketone promotes FNDC5 protein expression via HO-1 upregulation in 3T3-L1 adipocytes
Yung-Chieh Tsai, Jung-Hua Chen, Yen-Mei Lee, Mao-Hsiung Yen, Pao-Yun Cheng
March-April 2022, 65(2):80-86
DOI:10.4103/cjp.cjp_95_21  PMID:35488673
Obesity is a global health problem and a risk factor for cardiovascular diseases and cancers. Exercise is an effective intervention to combat obesity. Fibronectin type III domain containing protein 5 (FNDC5)/irisin, a myokine, can stimulate the browning of white adipose tissue by increasing uncoupling protein 1 (UCP1) expression, and therefore may represent a link between the beneficial effects of exercise and improvement in metabolic diseases. Thus, upregulating the endogenous expression of FNDC5/irisin by administering medication would be a good approach for treating obesity. Herein, we evaluated the efficacy of raspberry ketone (RK) in inducing FNDC5/irisin expression and the underlying mechanisms. The expression of brown fat-specific proteins (PR domain containing 16 (PRDM16), CD137, and UCP1), heme oxygenase-1 (HO-1), FNDC5, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) in differentiated 3T3-L1 adipocyte was analyzed by western blotting or immunofluorescence. The level of irisin in the culture medium was also assayed using an enzyme-linked immunosorbent assay kit. Results showed that RK (50 μM) significantly induced the upregulation of FNDC5 protein in differentiated 3T3-L1 adipocytes; however, the irisin level in the culture media was unaffected. Moreover, RK significantly increased the levels of PGC1α, brown adipocyte markers (PRDM16, CD137, and UCP1), and HO-1. Furthermore, the upregulation of PGC1α and FNDC5 and the browning effect induced by RK were significantly reduced by SnPP or FNDC5 siRNA, respectively. In conclusion, RK can induce FNDC5 protein expression via the HO-1 signaling pathway, and this study provides new evidence for the potential use of RK in the treatment of obesity.
  894 146 -
Connexin 43 mediated the angiogenesis of buyang huanwu decoction via vascular endothelial growth factor and angiopoietin-1 after ischemic stroke
Ying Zhou, Ya-Xing Zhang, Kai-Ling Yang, Yu-Lian Liu, Fang-Hua Wu, Yu-Rong Gao, Wei Liu
March-April 2022, 65(2):72-79
DOI:10.4103/cjp.cjp_94_21  PMID:35488672
Buyang Huanwu decoction (BYHWD), a classical prescription for ischemic stroke, has been reported to promote angiogenesis after focal ischemia. However, the mechanisms of the contribution of BYHWD on angiogenesis are still unclear. Connexin 43 (Cx43) played important roles in the functions of neurogliovascular unit. Therefore, the aim of this study was to explore the potential role of Cx43 in angiogenesis of the ischemic brain after BYHWD treatment. Middle cerebral artery occlusion (MCAO) was used to establish the model of focal ischemia. BYHWD was administrated intragastrically twice a day after MCAO with or without Gap26 (a specific Cx43 inhibitor). Western blot, neurological deficits, immunofluorescent staining, and Evans blue dye were used to confirm the role of Cx43 in angiogenesis after BYHWD treatment. The expression levels of total Cx43 and phosphorylated Cx43 were upregulated by BYHWD and peaked at 7 days post MCAO. Inhibition of Cx43 with Gap26 significantly attenuated the protective role of BYHWD in neurological behavior. BYHWD treatment promoted angiogenesis demonstrated by increased microvascular density, upregulated vascular endothelial growth factor (VEGF), and angiopoietin-1 (Ang-1), while inhibition of Cx43 with Gap26 attenuated these effects of BYHWD. In addition, Gap26 inhibited the beneficial effect of BYHWD on blood-brain barrier (BBB) integrity. These results suggested that Cx43 mediated the angiogenesis of BYHWD via VEGF and Ang-1 after focal ischemic stroke.
  830 114 -
Electroacupuncture relieves postoperative cognitive dysfunction in elderly rats via regulating amp-activated protein kinase autophagy signaling
Cong Niu, Meihua Zhu, Jiamin Zhang, Chenye Zhang, Weiqian Tian
March-April 2022, 65(2):87-92
DOI:10.4103/cjp.cjp_108_21  PMID:35488674
Postoperative cognitive dysfunction (POCD) is a common complication after surgery in elderly patients. Electroacupuncture (EA) has been reported to relieve POCD in animal models, but the mechanism remains fully elucidated. The objective of this work was to clarify whether EA could alleviate POCD via regulating autophagy. In this study, aged rats were assigned into 4 groups: control, surgery (rats underwent exploratory laparotomy to induce POCD), EA + S (rats received EA pre-stimulation before surgery), and EA + S + Chloroquine (CQ) (rats were intraperitoneally injected with CQ before EA stimulation and then underwent surgery). The cognitive function of rats was assessed by Morris Water Maze (MWM) test after surgery, and autophagy in hippocampal tissues of rats was evaluated by western blotting and transmission electron microscope. Results indicated that the MWM test revealed that rats showed reduced platform crossing and increased total swimming distance after surgery. However, this impaired spatial memory was improved by EA and EA plus CQ pre-treatment. Besides, the surgery caused an increased expression in LC3II, Beclin-1, AMP-activated protein kinase (AMPK), and p-AMPK in hippocampal tissues of rats, while EA and EA plus CQ pre-treatment also reversed this effect. In addition, the surgery-induced increased amount of autophagic vesicles in hippocampal tissues of rats was reduced by EA and EA plus CQ pre-treatment. In conclusion, EA pre-stimulation could effectively attenuate cognitive impairment in aged rats with POCD via inhibiting AMPK signaling-mediated autophagy.
  766 120 -
Prostaglandin F2 receptor inhibitor overexpression predicts advanced who grades and adverse prognosis in human glioma tissue
Ho-Wen Chen, Meng-Chi Lin, Pei-Ru Wu, Yu-Chan Chang, Sung-Shun Weng, Wen-Chiuan Tsai
March-April 2022, 65(2):93-102
DOI:10.4103/cjp.cjp_97_21  PMID:35488675
Prostaglandin F2 receptor inhibitor (PTGFRN) promotes neoplastic cell migration and metastasis in some human cancers. However, the role of PTGFRN in human gliomas is still undetermined. First of all, PTGFRN messenger ribonucleic acid (mRNA) overexpression correlated with some poor prognostic factors of glioma after analyzing The Cancer Genome Atlas and Chinese Glioma Genome Atlas database. In order to detect the effect of PTGFRN expression on tumor characteristics of gliomas, U87MG, LN229, and glioblastoma 8401 glioma cell lines were cultured and prepared for western blot analysis and real-time polymerase chain reaction, respectively. The results revealed the overexpression of PTGFRN in all glioma cell lines as compared to normal brain cells. In addition, PTGFRN immunohistochemical (IHC) staining was performed on two sets of glioma tissue microarrays. Consistent with the results of in vitro studies, cytoplasmic PTGFRN immunostaining scores positively correlated with tumor grades and poor prognosis of gliomas. Therefore, PTGFRN IHC staining may be useful for the evaluation of tumor grades and overall survival time to facilitate the tailoring of appropriate treatment strategy. PTGFRN may serve as a potential pharmacologic target for the suppression of gliomagenesis.
  607 104 -
Corrigendum: Hydroxytyrosol [2-(3,4-dihydroxyphenyl)-ethanol], a natural phenolic compound found in the olive, alters Ca2+ signaling and viability in human HepG2 hepatoma cells

March-April 2022, 65(2):103-103
DOI:10.4103/0304-4920.344179  PMID:35488676
  354 34 -